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Abstract

This paper introduces a learning scheme to construct a
Hilbert space (i.e., a vector space along its inner product)
to address both unsupervised and semi-supervised domain
adaptation problems. This is achieved by learning projec-
tions from each domain to a latent space along the Maha-
lanobis metric of the latent space to simultaneously min-
imizing a notion of domain variance while maximizing a
measure of discriminatory power. In particular, we make
use of the Riemannian optimization techniques to match sta-
tistical properties (e.g., first and second order statistics) be-
tween samples projected into the latent space from differ-
ent domains. Upon availability of class labels, we further
deem samples sharing the same label to form more compact
clusters while pulling away samples coming from different
classes.We extensively evaluate and contrast our proposal
against state-of-the-art methods for the task of visual do-
main adaptation using both handcrafted and deep-net fea-
tures. Our experiments show that even with a simple near-
est neighbor classifier, the proposed method can outperform
several state-of-the-art methods benefiting from more in-
volved classification schemes.

1. Introduction
This paper presents a learning algorithm to address both

unsupervised [21, 16, 49] and semi-supervised [27, 14, 29]
domain adaptation problems. Our goal here is to learn a la-
tent space in which domain disparities are minimized. We
show such a space can be learned by first matching the sta-
tistical properties of the projected domains (e.g., covari-
ance matrices), and then adapting the Mahalanobis met-
ric of the latent space to the labeled data, i.e., minimiz-
ing the distances between pairs sharing the same class label
while pulling away samples with different class labels. We
develop a geometrical solution to jointly learn projections
onto the latent space and the Mahalanobis metric there by
making use of the concepts of Riemannian geometry.

Thanks to deep learning, we are witnessing rapid growth
in classification accuracy of the imaging techniques if sub-

stantial amount of labeled data is provided [35, 48, 25, 26].
However, harnessing the attained knowledge into a new ap-
plication with limited labeled data (or even without having
labels) is far beyond clear [33, 37, 19, 8, 51]. To make
things even more complicated, due to the inherit bias of
datasets [50, 47], straightforward use of large amount of
auxiliary data does not necessarily assure improved perfor-
mances. For example, the ImageNet [43] data is hardly use-
ful for an application designed to classify images captured
by a mobile phone camera. Domain Adaptation (DA) is the
science of reducing such undesired effects in transferring
knowledge from the available auxiliary resources to a new
problem.

The most natural solution to the problem of DA is by
identifying the structure of a common space that minimizes
a notion of domain mismatch. Once such a space is ob-
tained, one can design a classifier in it, hoping that the clas-
sifier will perform equally well across the domains as the
domain mismatched is minimized. Towards this end, sev-
eral studies assume that either 1. a subspace of the tar-
get1 domain is the right space to perform DA and learn
how the source domain should be mapped onto it [45, 29],
or 2. subspaces obtained from both source and target do-
mains are equally important for classification, hence trying
to either learn their evolution [22, 21] or similarity mea-
sure [46, 52, 14].

Objectively speaking, a common practice in many solu-
tions including the aforementioned methods, is to simplify
the learning problem by separating the two elements of it.
That is, the algorithm starts by fixing a space (e.g., source
subspace in [16, 29]), and learns how to transfer the knowl-
edge from domains accordingly. A curious mind may ask
why should we resort to a predefined and fixed space in the
first place.

In this paper, we propose a learning scheme that avoids
such a separation. That is, we do not assume that a space
or a transformation, apriori is known and fixed for DA. In

1In DA terminology target domain refers to the data directly related to
the task. Source domain data is used as the auxiliary data for knowledge
transferring.



essence, we propose to learn the structure of a Hilbert space
(i.e., its metric) along the transformations required to map
the domains onto it jointly. This is achieved through the
following contributions,

(i) We propose to learn the structure of a latent space,
along its associated mappings from the source and tar-
get domains to address both problems of unsupervised
and semi-supervised DA.

(ii) Towards this end, we propose to maximize a notion of
discriminatory power in the latent space. At the same
time, we seek the latent space to minimize a notion
of statistical mismatch between the source and target
domains (see Fig. 1 for a conceptual diagram).

(iii) Given the complexity of the resulting problem, we pro-
vide a rigorous mathematical modeling of the problem.
In particular, we make use of the Riemannian geome-
try and optimization techniques on matrix manifolds to
solve our learning problem2.

(iv) We extensively evaluate and contrast our solution
against several baseline and state-of-the-art methods in
addressing both unsupervised and semi-supervised DA
problems.

2. Proposed Method
In this work, we are interested in learning an Invariant

Latent Space (ILS) to reduce the discrepancy between do-
mains. We first define our notations. Bold capital letters de-
note matrices (e.g., X) and bold lower-case letters denote
column vectors (e.g., x). In is the n × n identity matrix.
Sn++ and St(n, p) denote the SPD and Stiefel manifolds,
respectively, and will be formally defined later. We show
the source and target domains by Xs ⊂ Rs and Xt ⊂ Rt.
The training samples from the source and target domains
are shown by {xsi , ysi }

ns
i=1 and {xti}

nt
i=1, respectively. For

now, we assume only source data is labeled. Later, we dis-
cuss how the proposed learning framework can benefit form
the labeled target data.

Our idea in learning an ILS is to determine the trans-
formations Rs×p 3 W s : Xs → H and Rt×p 3 W t :
Xt → H from the source and target domains to a latent p-
dimensional space H ⊂ Rp. We furthermore want to equip
the latent space with a Mahalanobis metric, M ∈ Sp++, to
reduce the discrepancy between projected source and tar-
get samples (see Fig. 1 for a conceptual diagram). To learn
W s, W t and M we propose to minimize a cost function
in the form

L = Ld + λLu . (1)

In Eq. 1, Ld is a measure of dissimilarity between labeled
samples. The term Lu quantifies a notion of statistical dif-

2Our implementation is available on https://sherath@
bitbucket.org/sherath/ils.git.

ference between the source and target samples in the la-
tent space. As such, minimizing L leads to learning a la-
tent space where not only the dissimilarity between labeled
samples is reduced but also the domains are matched from a
statistical point of view. The combination weight λ is envis-
aged to balance the two terms. The subscripts “d” and “u”
in Eq. 1 stand for “Discriminative” and “Unsupervised”.
The reason behind such naming will become clear shortly.
Below we detail out the form and properties of Ld and Lu.

2.1. Discriminative Loss

The purpose of having Ld in Eq. 1 is to equip the la-
tent space H with a metric to 1. minimize dissimilarities
between samples coming from the same class and 2. max-
imizing the dissimilarities between samples from different
classes.

Let Z = {zj}nj=1 be the set of labeled samples in H. In
unsupervised domain adaptation zj = W T

s x
s
j and n = ns.

In the case of semi-supervised domain adaptation,

Z =
{
W T

s x
s
j

}ns

j=1

⋃{
W T

t x
t
j

}ntl

j=1
,

where we assume ntl labeled target samples are provided
(out of available nt samples). From the labeled samples
in H, we create Np pairs in the form (z1,k, z2,k), k =
1, 2, · · · , Np along their associated label yk ∈ {−1, 1}.
Here, yk = 1 iff label of z1,k is similar to that of z2,k

and −1 otherwise. That is the pair (z1,k, z2,k) is similar
if yk = 1 and dissimilar otherwise.

To learn the metric M , we deem the distances between
the similar pairs to be small while simultaneously making
the distances between the dissimilar pairs large. In particu-
lar, we define Ld as,

Ld =
1

Np

Np∑
k=1

`β
(
M , yk, z1,k − z2,k, 1

)
+ r(M), (2)

with

`β
(
M , y,x, u

)
=

1

β
log
(

1 + exp
(
βy(xTMx− u)

))
.

(3)

Here, `β is the generalized logistic function tailored with
large margin structure (see Fig. 2) having a margin of u3.
First note that the quadratic term in Eq. 3 (i.e., xTMx)
measures the Mahalanobis distance between z1,k and z2,k

if used according to Eq.2. Also note that `β
(
·, ·,x, ·

)
=

`β
(
·, ·,−x, ·

)
, hence how samples are order in the pairs is

not important.
To better understand the behavior of the function `β , as-

sume the function is fed with a similar pair, i.e. yk = 1. For
3For now we keep the margin at u = 1 and later will use this to explain

the soft-margin extension.

https://sherath@bitbucket.org/sherath/ils.git
https://sherath@bitbucket.org/sherath/ils.git


Figure 1. A conceptual diagram of our proposal. The marker shape represents the instance labels and color represents their original
domains. Both source and target domains are mapped to a latent space using the transformations W s and W t. The metric, M defined
in the latent space is learned to maximize the discriminative power of samples in it. Indicated by dashed ellipsoids are the domain
distributions. The statistical loss of our cost function aims to reduce such discrepancies within the latent space. Our learning scheme
identifies the transformations W s and W t and the metric M jointly. This figure is best viewed in color.

the sake of discussion, also assume β = 1. In this case,
`β is decreased if the distance between z1,k and z2,k is re-
duced. For a dissimilar pair (i.e., yk = −1), the opposite
should happen to have a smaller objective. That is, the Ma-
halanobis distance between the samples of a pair should be
increased.

The function `β
(
·, ·,x, ·

)
can be understood as a smooth

and differentiable form of the hinge-loss function. In fact,
`β
(
·, ·,x, ·

)
asymptotically reaches the hinge-loss function

if β →∞. The smooth behavior of `β
(
·, ·,x, ·

)
is not only

welcomed in the optimization scheme but also avoids sam-
ples in the latent space to collapse into a single point.

Figure 2. The behavior of the proposed `β( 3) with u = 1 for
various values of parameter β. Here, the horizontal axis is the
value of the Mahalanobis distance and the function is plotted for
y = +1. When β → ∞, the function approaches the hinge-loss.
An example of the soft-margin case (see Eq. 6), is also plotted for
β = 5 curve. The figure is best seen in color.

Along the general practice in metric learning, we reg-
ularize the metric M by r(M). The divergences derived
from the log det(·) function are familiar faces for regulariz-
ing Mahalanobis metrics in the litrature [13, 45].

Among possible choices, we make use of the Stein di-

vergence [11] in this work. Hence,

r(M) =
1

p
δs(M , Ip). (4)

Where,

δs(P ,Q) = log det
(P + Q

2

)
− 1

2
log det

(
PQ

)
, (5)

for P ,Q ∈ S++. Our motivation in using the Stein di-
vergence stems from its unique properties. Among others,
Stein divergence is symmetric, invariant to affine transfor-
mation and closely related to geodesic distances on the SPD
manifold [11, 24, 9].

Soft Margin Extension

For large values of β, the cost in Eq. 2 seeks the dis-
tances of similar pairs to be less than 1 while simultane-
ously it deems the distances of dissimilar pairs to exceed 1.
This hard-margin in the design of `β

(
·, ·,x, ·

)
is not desir-

able. For example, with a large number of pairs, it is often
the case to have outliers. Forcing outliers to fit into the hard
margins can result in overfitting. As such, we propose a
soft-margin extension of Eq. 3. The soft-margins are imple-
mented by associating a non-negative slack variable εk to a
pair according to

Ld =
1

Np

Np∑
k=1

`β
(
M , yk, z1,k − z2,k, 1 + ykεk

)
+

r(M) +
1

Np

√∑
ε2k, (6)

where a regularizer on the slack variables is also envisaged.

2.2. Matching Statistical Properties

A form of incompatibility between domains is due to
their statistical discrepancies. Matching the first order



statistics of two domains for the purpose of adaptation is
studied in [40, 2, 29]4. In our framework, matching do-
main averages can be achieved readily. In particular, let
x̄si = xsi −ms and x̄tj = xtj −mt be the centered source
and target samples with ms and mt being the mean of
corresponding domains. It follows easily that the domain
means in the latent space are zero5 and hence matching is
achieved.

To go beyond first order statistics, we propose to match
the second order statistics (i.e., covariance matrices) as well.
The covariance of a domain reflects the relationships be-
tween its features. Hence, matching covariances of source
and target domains in effect improves the cross feature re-
lationships. We capture the mismatch between source and
target covariances in the latent space using the Lu loss in
Eq. 1. Given the fact that covariance matrices are points on
the SPD manifold, we make use of the Stein divergence to
measure their differences. This leads us to define Lu as

Lu =
1

p
δs(W

T
s ΣsW s,W

T
t ΣtW t), (7)

with Σs ∈ Ss++ and Σt ∈ St++ being the covariance matri-
ces of the source and target domains, respectively. We em-
phasize that matching the statistical properties as discussed
above is an unsupervised technique, enabling us to address
unsupervised DA.

2.3. Classification Protocol

Upon learning W s, W t, M , training samples from the
source and target (if available) domains are mapped to the
latent space using W sM

1
2 and W tM

1
2 , respectively. For

a query from the target domain xtq , M
1
2W T

t x
t
q is its latent

space representation which is subsequently classified by a
nearest neighbor classifier.

3. Optimization
The objective of our algorithm is to learn the transfor-

mation parameters (W s and W t), the metric M and slack
variables ε1, ε2, ...εNp

(see Eq. 6 and Eq. 7). Inline with the
general practice of dimensionality reduction, we propose
to have orthogonality constraints on W s and W t. That
is W T

sW s = W T
t W t = Ip. We include an experiment

elaborating how orthogonality constraint improves the dis-
criminatory power of the proposed framework in the sup-
plementary material.

4 The use of Maximum Mean Discrepancy (MMD) [5] for domain
adaptation is a well-practiced idea in the literature (see for example [40,
2, 29]). Empirically, determining MMD boils down to computing the dis-
tance between domain averages when domain samples are lifted to a repro-
ducing kernel Hilbert space. Some studies claim matching the first order
statistics is a weaker form of domain adaptation through MMD. We do not
support this claim and hence do not see our solution as a domain adaptation
method by minimizing the MMD.

5We note that
∑

W T
s x̄

s
i = W T

s

∑
x̄si = 0. This holds for the target

domain as well.

The problem depicted in Eq. 1 is indeed a non-convex
and constrained optimization problem. One may resort to
the method of Projected Gradient Descent (PGD) [7] to
minimize Eq. 1. In PGD, optimization is proceed by pro-
jecting the gradient-descent updates onto the set of con-
straints. For example, in our case, we can first update W s

by ignoring the orthogonality constraint on W s and then
project the result onto the set of orthogonal matrices us-
ing eigen-decomposition. As such, optimization can be per-
formed by alternatingly updating W s, W t, the metric M
and slack variables using PGD.

In PGD, to perform the projection, the set of constraints
needs to be closed though in practice one can resort to
open sets. For example, the set of SPD matrices is open
though one can project a symmetric matrix onto this set us-
ing eigen-decomposition.

Empirically, PGD showed an erratic and numerically un-
stable behavior in addressing our problem. This can be at-
tributed to the non-linear nature of Eq. 1, existence of open-
set constraints in the problem or perhaps the combination of
both. To alleviate the aforementioned difficulty, we propose
a more principle approach to minimize Eq. 1 by making
use of the Riemannian optimization technique. We take a
short detour and briefly describe the Riemannian optimiza-
tion methods below.

Optimization on Riemannian manifolds.

Consider a non-convex constrained problem in the form

minimize f(x)

s.t. x ∈M , (8)

where M is a Riemannian manifold, i.e., informally, a
smooth surface that locally resembles a Euclidean space.
Optimization techniques on Riemannian manifolds (e.g.,
Conjugate Gradient) start with an initial solution x(0) ∈
M, and iteratively improve the solution by following the
geodesic identified by the gradient. For example, in the case
of Riemannian Gradient Descent Method (RGDM), the up-
dating rule reads

x(t+1) = τx(t)

(
− α grad f(x(t))

)
, (9)

with α > 0 being the algorithm’s step size. Here, τx(·) :
TxM → M, is called the retraction6 and moves the solu-
tion along the descent direction while assuring that the new
solution is on the manifold M, i.e., it is within the con-
straint set. TxM is the tangent space of M at x and can
be thought of as a vector space with its vectors being the
gradients of all functions defined onM.

6Strictly speaking and in contrast with the exponential map, a retrac-
tion only guarantees to pull a tangent vector on the geodesic locally, i.e.,
close to the origin of the tangent space. Retractions, however, are typically
easier to compute than the exponential map and have proven effective in
Riemannian optimization [1].



Due to space limitation, we defer more details on Rie-
mannian optimization techniques to the supplementary. As
for now, it suffices to say that to perform optimization on the
Riemannian manifolds, the form of Riemannian gradient,
retraction and the gradient of the objective with respect to
its parameters (shown by∇) are required. The constraints in
Eq.1 are orthogonality (transformations W s and W t) and
p.d. for metric M . The geometry of these constraints are
captured by the Stiefel [30, 23] and SPD [24, 10] manifolds,
formally defined as

Definition 1 (The Stiefel Manifold) The set of (n × p)-
dimensional matrices, p ≤ n, with orthonormal columns
endowed with the Frobenius inner product7 forms a com-
pact Riemannian manifold called the Stiefel manifold
St(p, n) [1].

St(p, n) , {W ∈ Rn×p : W TW = Ip} . (10)

Definition 2 (The SPD Manifold) The set of (p × p) di-
mensional real, SPD matrices endowed with the Affine In-
variant Riemannian Metric (AIRM) [42] forms the SPD
manifold Sp++.

Sp++ , {M ∈ Rp×p : vTMv > 0, ∀v ∈ Rp − {0p}}.
(11)

Updating W s, W t and M and slacks can be done al-
ternatively using Riemannian optimization. As mentioned
above, the ingredients for doing so are 1. the Riemannian
tools for the Stiefel and SPD manifolds along 2. the form
of gradients of the objective with respect to its parameters.
To do complete justice, in Table. 1 we provide the Riem-
manian metric, form of Riemannian gradient and retraction
for the Stiefel and SPD manifolds. In Table. 2, the gradi-
ent of Eq. 1 with respect to W s, W t and M and slacks
is provided. The detail of derivations can be found in the
supplementary material. A tiny note about the slacks worth
mentioning. To preserve the non-negativity constraint on
εk, we define εk = evk and optimize on vk instead. This in
turn makes optimization for the slacks unconstrained.

Remark 1 From a geometrical point of view, we can make
use of the product topology of the parameter space to avoid
alternative optimization. More specifically, the set

Mprod. = St(p, s)× St(p, t)× Sp++ × RNp , (12)

can be given the structure of a Riemannian manifold using
the concept of product topology [1].

Remark 2 In Fig. 3, we compare the convergence behav-
ior of PGD, alternating Riemannian optimization and opti-
mization using the product geometry. While optimization on

7Note that the literature is divided between this choice and another form
of Riemannian metric. See [15] for details.

Figure 3. Optimizing Eq. 1 using PGD (red curve), Riemannian
gradient descent using alternating approach (blue curve) and prod-
uct topology (green curve). Optimization using the product topol-
ogy converges faster but a lower cost can be attained using alter-
nating Riemannian optimization.

Mprod. convergences faster, the alternating method results
in a lower loss. This behavior resembles the difference be-
tween the stochastic gradient descent compared to its batch
counterpart.
Remark 3 The complexity of the optimization depends on
the number of labeled pairs. One can always resort to a
stochastic solution [39, 44, 4] by sampling from the set
of similar/dissimilar pairs if addressing a very large-scale
problem. In our experiments, we did not face any difficulty
optimizing with an i7 desktop machine with 32GB of mem-
ory.

4. Related Work
The literature on domain adaptation spans a very broad

range (see [41] for a recent survey). Our solution falls un-
der the category of domain adaptation by subspace learning
(DA-SL). As such, we confine our review only to methods
under the umbrella of DA-SL.

One notable example of constructing a latent space is the
work of Daumé III et al. [12]. In particular, the authors
propose to use two fixed and predefined transformations
to project source and target data to a common and higher-
dimensional space. As a requirement, the method only ac-
cepts domains with the same dimensionality and hence can-
not be directly used to adapt heterogeneous domains.

Goplan et al. observed that the geodesic connecting the
source and target subspaces conveys useful information
for DA and proposed the Sampling Geodesic Flow (SGF)
method [22]. The Geodesic Flow Kernel (GFK) is an im-
provement over the SGF technique where instead of sam-
pling a few points on the geodesic, the whole curve is
used for domain adaptation [21]. In both methods, the do-
main subspaces are fixed and obtained by Principal Com-
ponent Analysis (PCA) or Partial Least Square regression
(PLS) [34]. In contrast to our solution, in SGF and GFK
learning the domain subspaces is disjoint from the knowl-
edge transfer algorithm. In our experiments, we will see



Table 1. Riemannian metric, gradient and retraction on St(p, n) and Sp++. Here, uf(A) = A(ATA)−1/2, which yields an orthogonal
matrix, sym(A) = 1

2
(A+AT ) and expm(·) denotes the matrix exponential.

St(p, n) Sp++

Matrix representation W ∈ Rn×p M ∈ Rp×p
Riemannian metric gν(ξ, ς) = Tr(ξT ς) gS(ξ, ς) = Tr

(
M−1ξM−1ς

)
Riemannian gradient ∇W (f)−W sym

(
W T∇W (f)

)
Msym

(
∇M (f)

)
M

Retraction uf(W + ξ) M
1
2 expm(M− 1

2 ξM− 1
2 )M

1
2

Table 2. Gradients of soft-margin `β and Lu w.r.t. the model
parameters and slack variables. Without less of generality we only
consider a labeled similar (yk = +1) pair xsi and xtj . Here, r =
exp

(
β
(
(W T

s x
s
i −W T

t x
t
i)
TM(W T

s x
s
i −W T

t x
t
i)− 1− evk

))
.

∇W s`β
2
Np

(1 + r−1)−1xsi (x
s
i
TW s − xtj

T
W t)M

∇M `β
1
Np

(1 + r−1)−1(W T
s x

s
i −W T

t x
t
j)(x

s
i
TW s − xtj

T
W t)

∇vk`β −1
Np
evk(1 + r−1)−1

∇W s
Lu 1

pΣsW s

(
2
{
W T

s ΣsW s + W T
t ΣtW t

}−1−
{
W T

s ΣsW s

}−1)
that the subspaces determined by our method can even boost
the performance of GFK, showing the importance of joint
learning of domain subspaces and knowledge transferring.
In [38] dictionary learning is used for interpolating the in-
termediate subspaces.

Domain adaptation by fixing the subspace/representation
of one of the domains is a popular theme in many recent
works, as it simplifies the learning scheme. Examples are
the max-margin adaptation [27, 14], the metric/similarity
learning of [45] and its kernel extension [36], the landmark
approach of [29], the alignment technique of [16, 17], cor-
relation matching of [49] and methods that use maximum
mean discrepancy (MMD) [5] for DA [40, 2].

In contrast to the above methods, some studies opt
to learn the domain representation along the knowledge
transfer method jointly. Two representative works are the
HeMap [46] and manifold alignment [52]. The HeMap
learns two projections to minimize the instance discrepan-
cies [46]. The problem is however formulated such that
equal number of source and target instances is required to
perform the training. The manifold alignment algorithm
of [52] attempts to preserve the label structure in the la-
tent space. However, it is essential for the algorithm to have
access to labeled data in both source and target domains.

Our solution learns all transformations to the latent
space. We do not resort at subspace representations learned
disjointly to the DA framework. With this use of the latent
space, our algorithm is not limited for applications where
source and target data have similar dimensions or structure.

5. Experimental Evaluations
We run extensive experiments on both semi-supervised

and unsupervised settings, spanning from the handcrafted
features (SURF) to the current state-of-the-art deep-net fea-
tures (VGG-Net). For comparisons, we use the implemen-
tations made available by the original authors. Our method
is denoted by ILS.

5.1. Implementation Details

Since the number of dissimilar pairs is naturally larger
than the number of similar pairs, we randomly sample from
the different pairs to keep the sizes of these two sets equal.
We initialize the projection matrices Ws, Wt with PCA,
following the transductive protocol [21, 16, 27, 29]. For the
semi-supervised setting, we initialize M with the Maha-
lanobis metric learned on the similar pair covariances [31],
and for the unsupervised setting, we initialize it with the
identity matrix. For all our experiments we have λ = 1. We
include an experiment showing our solution’s robustness to
λ in the supplementary material. We use the toolbox pro-
vided by [6] for our implementations.

Remark 4 To have a simple way of determining β in Eq. 3,
we propose a heuristic which is shown to be effective in our
experiments. To this end, we propose to set β to the recipro-
cal of the standard deviation of the similar pair distances.

5.2. Semi-supervised Setting

In our semi-supervised experiments, we follow the
standard setup on the Office+Caltech10 dataset with the
train/test splits provided by [28]. The Office+Caltech10
dataset contains images collected from 4 different sources
and 10 object classes. The corresponding domains are
Amazon, Webcam, DSLR, and Caltech. We use a sub-
space of dimension 20 for DA-SL algorithms. We employ
SURF [3] for the handcrafted feature experiments. We ex-
tract VGG-Net features with the network model of [48] for
the deep-net feature experiments8. We compare our perfor-
mance with the following benchmarks:
1-NN-t and SVM-t : Basic Nearest Neighbor (1-NN) and
linear SVM classifiers trained only on the target domain.
HFA [14] : This method employs latent space learning
based on the max-margin framework. As in its original im-
plementation, we use the RBF kernel SVM for its evalua-
tion.
MMDT [27] : This method jointly learns a transformation
between the source and target domains along a linear SVM
for classification.
CDLS [29] : This is the cross-domain landmark search al-
gorithm. We use the parameter setting (δ = 0.5 in the nota-
tion of [29]) recommended by the authors.

8The same SURF and VGG-FC6 features are used for the unsupervised
experiments as well.



Table 3 and Table 4 report the performances using the
handcrafted SURF and the VGG-FC6 layer features, re-
spectively. For the SURF features our solution achieves
the best performance in 7 out 12 cases, and for the VGG-
FC6 features, our solution tops in 9 sets. We notice the 1-
NN-t baseline performs the worst for both SURF and the
VGG-FC6 features. Hence, it is clear that the used fea-
tures do not favor the nearest neighbor classifier. We ob-
serve that Caltech and Amazon domains contain the largest
number of test instances. Although the performances of all
tested methods decrease on these domains, particularly on
Caltech, our method achieves the top rank in almost all do-
main transformations.

5.3. Unsupervised Setting

In the unsupervised domain adaptation problem, only la-
beled data from the source domain is available [16, 21].
We perform two sets of experiments for this setting. (1)
We evaluate the object recognition performance on the Of-
fice+Caltech10 dataset. Similar to the semi-supervised set-
tings, we use the SURF and VGG-FC6 features. Our re-
sults demonstrate that the learned transformations by our
method are superior domain representations. (2) We ana-
lyze our performance when the domain discrepancy is grad-
ually increased. This experiment is performed on the PIE-
Face dataset. We compare our method with the following
benchmarks:

1-NN-s and SVM-s : Basic 1-NN and linear SVM classi-
fiers trained only on the source domain.
GFK-PLS [21] : The geodesic flow kernel algorithm where
partial least squares (PLS) implementation is used to initial-
ize the source subspace. Results are evaluated on kernel-
NNs.
SA [16] : This is the subspace alignment algorithm. Results
are evaluated using 1-NN.
CORAL [49] : The correlation alignment algorithm that
uses a linear SVM on the similarity matrix formed by cor-
relation matching.

5.3.1 Office+Caltech10 (Unsupervised)

We follow the original protocol provided by [21] on Of-
fice+Caltech10 dataset. Note that several baselines, deter-
mine the best dimensionality per domain to achieve their
maximum accuracies on SURF features. We observed that
a dimensionality in the range [20,120] provides consistent
results for our solution using SURF features. For VGG fea-
tures we empirically found the dimensionality of 20 suits
best for the compared DA-SL algorithms.

Table. 5 and Table. 6 present the unsupervised setting
results using the SURF and VGG-FC6 features. For both
feature types, our solution yields the best performance in 8
domain transformations out of 12.

Figure 4. The accuracy gain on Office-Caltech dataset for
GFK [21] and SA [16] when their initial PCA subspaces are re-
placed with PLS and our Ws transformation matrices.

Learned Transformations as Subspace Representations:
We consider both GFK [21] and SA [16] as DA-SL algo-
rithms. Both these methods make use of PCA subspaces to
adapt the domains. Nevertheless, there is no strong reason
to assume the PCA subspaces favorably capture the domain
structure for transfer learning. Gong et al., [21] show that
their performance improves when employing PLS9 to define
the source subspace. However, this subspace learning is dis-
joint to their domain adaptation technique. We notice that, a
more suitable initialization would be to use a subspace rep-
resentation learned along with a domain adaptation frame-
work. We empirically show this by using our learned source
transformation matrix W s as the source subspace initializa-
tion for [21] and [16].

Figure 4 compares the accuracy gains over PCA spaces
by using PLS and our W s initialization. It is clear that the
highest classification accuracy gain is obtained by our W s

initialization. This proves that W s is capable to learn a
more favorable subspace representation for DA.

5.3.2 PIE-Multiview Faces

The PIE Multiview dataset includes face images of 67 in-
dividuals captured from different views, illumination con-
ditions, and expressions. In this experiment, we use the
viewsC27 (looking forward) as the source domain andC09
(looking down), and the views C05, C37, C02, C25 (look-
ing towards left in an increasing angle, see Fig. 5) as target
domains. We expect the face inclination angle to reflect the
complexity of transfer learning. We normalize the images to
32× 32 pixels and use the vectorized gray-scale images as
features. Empirically, we observed that the GFK [21] and
SA [16] reach better performances if the features are nor-
malized to have unit `2 norm. We therefore use `2 normal-
ized features in our evaluations. The dimensionality of the
subspaces for all the subspace based methods (i.e., [21, 16])
including ours is 100.

Table. 7 lists the classification accuracies with increasing
angle of inclination. Our solution attains best scores for 4
views and the second best for the C09. With the increasing

9Despite using labeled data, this method falls under the unsupervised
setting since it does not use the labeled target data.



Table 3. Semi-supervised domain adaptation results using SURF features on Office+Caltech10 [21] dataset with the evaluation setup
of [27]. The best score (in bold blue), the second best (in blue).

A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D
1-NN-t 34.5 33.6 19.7 29.5 35.9 18.9 27.1 33.4 18.6 29.2 33.5 34.1
SVM-t 63.7 57.2 32.2 46.0 56.5 29.7 45.3 62.1 32.0 45.1 60.2 56.3

HFA [14] 57.4 55.1 31.0 56.5 56.5 29.0 42.9 60.5 30.9 43.8 58.1 55.6
MMDT [27] 64.6 56.7 36.4 47.7 67.0 32.2 46.9 74.1 34.1 49.4 63.8 56.5

CDLS [29] 68.7 60.4 35.3 51.8 60.7 33.5 50.7 68.5 34.9 50.9 66.3 59.8
ILS (1-NN) 59.7 49.8 43.6 54.3 70.8 38.6 55.0 80.1 41.0 55.1 62.9 56.2

Table 4. Semi-supervised domain adaptation results using VGG-FC6 features on Office+Caltech10 [21] dataset with the evaluation setup
of [27]. The best (in bold blue), the second best (in blue).

A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D
1-NN-t 81.0 79.1 67.8 76.1 77.9 65.2 77.1 81.7 65.6 78.3 80.2 77.7
SVM-t 89.1 88.2 77.3 86.5 87.7 76.3 87.3 88.3 76.3 87.5 87.8 84.9

HFA [14] 87.9 87.1 75.5 85.1 87.3 74.4 85.9 86.9 74.8 86.2 86.0 87.0
MMDT [27] 82.5 77.1 78.7 84.7 85.1 73.6 83.6 86.1 71.8 85.9 82.8 77.9

CDLS [29] 91.2 86.9 78.1 87.4 88.5 78.2 88.1 90.7 77.9 88.0 89.7 86.3
ILS (1-NN) 90.7 87.7 83.3 88.8 94.5 82.8 88.7 95.5 81.4 89.7 91.4 86.9

Table 5. Unsupervised domain adaptation results using SURF features on Office+Caltech10 [21] dataset with the evaluation setup
of [21].The best (in bold blue), the second best (in blue).

A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D
1-NN-s 23.1 22.3 20.0 14.7 31.3 12.0 23.0 51.7 19.9 21.0 19.0 23.6
SVM-s 25.6 33.4 35.9 30.4 67.7 23.4 34.6 70.2 31.2 43.8 30.5 40.3

GFK-PLS [21] 35.7 35.1 37.9 35.5 71.2 29.3 36.2 79.1 32.7 40.4 35.8 41.1
SA [16] 38.6 37.6 35.3 37.4 80.3 32.3 38.0 83.6 32.4 39.0 36.8 39.6

CORAL [49] 38.7 38.3 40.3 37.8 84.9 34.6 38.1 85.9 34.2 47.2 39.2 40.7
ILS (1-NN) 40.6 41.0 37.1 38.6 72.4 32.6 38.9 79.1 36.9 48.6 42.0 44.1

Table 6. Unsupervised domain adaptation results using VGG-FC6 features on Office+Caltech10 [21] dataset with the evaluation setup
of [21].The best (in bold blue), the second best (in blue).

A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D
1-NN-s 60.9 52.3 70.1 62.4 83.9 57.5 57.0 86.7 48.0 81.9 65.9 55.6
SVM-s 63.1 51.7 74.2 69.8 89.4 64.7 58.7 91.8 55.5 86.7 74.8 61.5

GFK-PLS [21] 74.1 63.5 77.7 77.9 92.9 71.3 69.9 92.4 64.0 86.2 76.5 66.5
SA [16] 76.0 64.9 77.1 76.6 90.4 70.7 69.0 90.5 62.3 83.9 76.0 66.2

CORAL [49] 74.8 67.1 79.0 81.2 92.6 75.2 75.8 94.6 64.7 89.4 77.6 67.6
ILS (1-NN) 82.4 72.5 78.9 85.9 87.4 77.0 79.2 94.2 66.5 87.6 84.4 73.0

Figure 5. Two instances of the PIE-Multiview face data. Here, the
view from C27 is used as the source domain. Remaining views
are considered to be the target for each transformation.
Table 7. PIE-Multiview results. The variation of performance w.r.t.
face orientations when frontal face images are considered as the
source domain.

camera pose→ C09 C05 C37 C25 C02
1-NN-s 92.5 55.7 28.5 14.8 11.0
SVM-s 87.8 65.0 35.8 15.7 16.7

GFK-PLS [21] 92.5 74.0 32.1 14.1 12.3
SA [16] 97.9 85.9 47.9 16.6 13.9

CORAL [49] 91.4 74.8 35.3 13.4 13.2
ILS (1-NN) 96.6 88.3 72.9 28.4 34.8

camera angle, the feature structure changes up to a certain
extent. In other words, the features become heterogeneous.
However, our algorithm boosts the accuracies even under
such challenging conditions.

Conclusion

In this paper, we proposed a solution for both semi-
supervised and unsupervised Domain Adaptation (DA)
problems. Our solution learns a latent space in which do-
main discrepancies are minimized. We showed that such a
latent space can be obtained by 1. minimizing a notion of
discriminatory power over the available labeled data while
simultaneously 2. matching statistical properties across the
domains. To determine the latent space, we modeled the
learning problem as a minimization problem on Rieman-
nian manifolds and solved it using optimization techniques
on matrix manifolds.

Empirically, we showed that the proposed method out-
performed state-of-the-art DA solutions in semi-supervised
and unsupervised settings. With the proposed framework
we see possibilities of extending our solution to large scale
datasets with stochastic optimization techniques, multiple
source DA and for domain generalization [20, 18]. In terms
of algorithmic extensions we look forward to use dictionary
learning [32] and higher order statistics matching.



References
[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization al-

gorithms on matrix manifolds. Princeton University Press,
2009. 4, 5

[2] M. Baktashmotlagh, M. Harandi, and M. Salzmann.
Distribution-matching embedding for visual domain adapta-
tion. Journal of Machine Learning Research, 17(108):1–30,
2016. 4, 6

[3] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. In European conference on computer vision,
pages 404–417. Springer, 2006. 6

[4] S. Bonnabel. Stochastic gradient descent on Rieman-
nian manifolds. IEEE Transactions on Automatic Control,
58(9):2217–2229, 2013. 5

[5] K. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel,
B. Schoelkopf, and A. Smola. Integrating structured bio-
logical data by kernel maximum mean discrepancy. Bioin-
formatics, 22:e49–e57, 2006. 4, 6

[6] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre.
Manopt, a Matlab toolbox for optimization on manifolds.
Journal of Machine Learning Research, 15:1455–1459,
2014. 6

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004. 4

[8] Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and
S. Yan. Deep domain adaptation for describing people based
on fine-grained clothing attributes. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5315–5324, 2015. 1

[9] A. Cherian, V. Morellas, and N. Papanikolopoulos. Bayesian
nonparametric clustering for positive definite matrices. IEEE
transactions on pattern analysis and machine intelligence,
38(5):862–874, 2016. 3

[10] A. Cherian and S. Sra. Positive definite matrices: data rep-
resentation and applications to computer vision. Algorithmic
Advances in Riemannian Geometry and Applications: For
Machine Learning, Computer Vision, Statistics, and Opti-
mization, page 93, 2016. 5

[11] A. Cherian, S. Sra, A. Banerjee, and N. Papanikolopou-
los. Jensen-Bregman logdet divergence with application to
efficient similarity search for covariance matrices. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
35(9):2161–2174, Sept 2013. 3
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